

PROFESSIONAL
C++

INTRODUCTION . xlvii

 ▸ PART I INTRODUCTION TO PROFESSIONAL C++

CHAPTER 1 A Crash Course in C++ and the Standard Library 3

CHAPTER 2 Working with Strings and String Views . 87

CHAPTER 3 Coding with Style . 111

 ▸ PART II PROFESSIONAL C++ SOFTWARE DESIGN

CHAPTER 4 Designing Professional C++ Programs . 137

CHAPTER 5 Designing with Objects . 169

CHAPTER 6 Designing for Reuse . 187

 ▸ PART III C++ CODING THE PROFESSIONAL WAY

CHAPTER 7 Memory Management . 211

CHAPTER 8 Gaining Proficiency with Classes and Objects 249

CHAPTER 9 Mastering Classes and Objects . 283

CHAPTER 10 Discovering Inheritance Techniques . 337

CHAPTER 11 Odds and Ends . 397

CHAPTER 12 Writing Generic Code with Templates . 421

CHAPTER 13 Demystifying C++ I/O . 465

CHAPTER 14 Handling Errors . 495

CHAPTER 15 Overloading C++ Operators . 535

CHAPTER 16 Overview of the C++ Standard Library . 573

CHAPTER 17 Understanding Iterators and the Ranges Library 603

CHAPTER 18 Standard Library Containers . 627

CHAPTER 19 Function Pointers, Function Objects, and
Lambda Expressions . 699

CHAPTER 20 Mastering Standard Library Algorithms . 725

Continues

CHAPTER 21 String Localization and Regular Expressions 763

CHAPTER 22 Date and Time Utilities . 793

CHAPTER 23 Random Number Facilities . 809

CHAPTER 24 Additional Library Utilities . 821

 ▸ PART IV MASTERING ADVANCED FEATURES OF C++

CHAPTER 25 Customizing and Extending the Standard Library 833

CHAPTER 26 Advanced Templates . 877

CHAPTER 27 Multithreaded Programming with C++ . 915

 ▸ PART V C++ SOFTWARE ENGINEERING

CHAPTER 28 Maximizing Software Engineering Methods 971

CHAPTER 29 Writing Efficient C++ . 993

CHAPTER 30 Becoming Adept at Testing . 1021

CHAPTER 31 Conquering Debugging . 1045

CHAPTER 32 Incorporating Design Techniques and Frameworks 1083

CHAPTER 33 Applying Design Patterns . 1105

CHAPTER 34 Developing Cross-Platform and Cross-Language Applications . . . 1137

 ▸ PART VI APPENDICES

APPENDIX A C++ Interviews . 1165

APPENDIX B Annotated Bibliography . 1191

APPENDIX C Standard Library Header Files . 1203

APPENDIX D Introduction to UML . 1213

INDEX . 1219

PROFESSIONAL

C++

PROFESSIONAL

C++

Fifth Edition

Marc Gregoire

Professional C++

Copyright © 2021 by John Wiley & Sons, Inc., Indianapolis, Indiana

Published simultaneously in Canada and the United Kingdom

ISBN: 978-1-119-69540-0
ISBN: 978-1-119-69550-9 (ebk)
ISBN: 978-1-119-69545-5 (ebk)

Manufactured in the United States of America

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of
the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through
payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923,
(978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Permissions
Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online
at www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with respect
to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without
limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or promotional
materials. The advice and strategies contained herein may not be suitable for every situation. This work is sold with the
understanding that the publisher is not engaged in rendering legal, accounting, or other professional services. If professional
assistance is required, the services of a competent professional person should be sought. Neither the publisher nor the author
shall be liable for damages arising herefrom. The fact that an organization or Web site is referred to in this work as a citation
and/or a potential source of further information does not mean that the author or the publisher endorses the information the
organization or Web site may provide or recommendations it may make. Further, readers should be aware that Internet Web
sites listed in this work may have changed or disappeared between when this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with standard
print versions of this book may not be included in e-books or in print-on-demand. If this book refers to media such as a CD
or DVD that is not included in the version you purchased, you may download this material at booksupport.wiley.com.
For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2020950208

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Programmer to Programmer, and related trade dress are
trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other countries,
and may not be used without written permission. All other trademarks are the property of their respective owners. John
Wiley & Sons, Inc., is not associated with any product or vendor mentioned in this book.

Dedicated to my wonderful parents and my brother,

who are always there for me. Their support and

patience helped me in finishing this book.

ABOUT THE AUTHOR

MARC GREGOIRE is a software architect from Belgium. He graduated from the University of
Leuven, Belgium, with a degree in “Burgerlijk ingenieur in de computer wetenschappen” (equivalent
to a master of science in engineering in computer science). The year after, he received an advanced
master’s degree in artificial intelligence, cum laude, at the same university. After his studies, Marc
started working for a software consultancy company called Ordina Belgium. As a consultant, he
worked for Siemens and Nokia Siemens Networks on critical 2G and 3G software running on Solaris
for telecom operators. This required working in international teams stretching from South America
and the United States to Europe, the Middle East, Africa, and Asia. Now, Marc is a software architect
at Nikon Metrology (nikonmetrology.com), a division of Nikon and a leading provider of preci-
sion optical instruments, X-ray machines, and metrology solutions for X-ray, CT, and 3-D geometric
inspection.

His main expertise is C/C++, specifically Microsoft VC++ and the MFC framework. He has experi-
ence in developing C++ programs running 24/7 on Windows and Linux platforms: for example,
KNX/EIB home automation software. In addition to C/C++, Marc also likes C#.

Since April 2007, he has received the annual Microsoft MVP (Most Valuable Professional) award for
his Visual C++ expertise.

Marc is the founder of the Belgian C++ Users Group (becpp.org), co-author of C++ Standard
Library Quick Reference 1st and 2nd editions (Apress), a technical editor for numerous books for
several publishers, and a regular speaker at the CppCon C++ conference. He maintains a blog at
www.nuonsoft.com/blog/ and is passionate about traveling and gastronomic restaurants.

ABOUT THE TECHNICAL EDITORS

PETER VAN WEERT is a Belgian software engineer whose main interests and expertise are application
software development, programming languages, algorithms, and data structures.

He received his master of science degree in computer science summa cum laude with congratulations
from the Board of Examiners from the University of Leuven. In 2010, he completed his PhD thesis on
the design and efficient compilation of rule-based programming languages at the research group for
declarative programming languages and artificial intelligence. During his doctoral studies he was a
teaching assistant for object-oriented programming (Java), software analysis and design, and declara-
tive programming.

Peter then joined Nikon Metrology, where he worked on large-scale, industrial application software
in the area of 3-D laser scanning and point cloud inspection for over six years. Today, Peter is senior
C++ engineer and Scrum team leader at Medicim, the R&D unit for digital dentistry software of
Envista Holdings. At Medicim, he codevelops a suite of applications for dental professionals, capable
of capturing patient data from a wide range of hardware, with advanced diagnostic functionality and
support for implant planning and prosthetic design.

Common themes in his professional career include advanced desktop application development,
mastering and refactoring of code bases of millions of lines of C++ code, high-performant, real-time
processing of 3-D data, concurrency, algorithms and data structures, interfacing with cutting-edge
hardware, and leading agile development teams.

Peter is a regular speaker at, and board member of, the Belgian C++ Users Group. He also
co-authored two books: C++ Standard Library Quick Reference and Beginning C++ (5th edition),
both published by Apress.

OCKERT J. DU PREEZ is a self-taught developer who started learning programming in the days of
QBasic. He has written hundreds of developer articles over the years detailing his programming
quests and adventures. His articles can be found on CodeGuru (codeguru.com), Developer.com
(developer.com), DevX (devx.com), and Database Journal (databasejournal.com). Software
development is his second love, just after his wife and child.

He knows a broad spectrum of development languages including C++, C#, VB.NET, JavaScript, and
HTML. He has written the books Visual Studio 2019 In-Depth (BpB Publications) and JavaScript for
Gurus (BpB Publications).

He was a Microsoft Most Valuable Professional for .NET (2008–2017).

ACKNOWLEDGMENTS

I THANK THE JOHN WILEY & SONS AND WROX PRESS editorial and production teams for their sup-
port. Especially, thank you to Jim Minatel, executive editor at Wiley, for giving me a chance to write
this fifth edition; Kelly Talbot, project editor, for managing this project; and Kim Wimpsett, copy edi-
tor, for improving readability and consistency and making sure the text is grammatically correct.

Thanks to technical editor Hannes Du Preez for checking the technical accuracy of the book. His
contributions in strengthening this book are greatly appreciated.

A very special thank you to technical editor Peter Van Weert for his outstanding contributions. His
considerable advice and insights have truly elevated this book to a higher level.

Of course, the support and patience of my parents and my brother were very important in finishing
this book. I would also like to express my sincere gratitude to my employer, Nikon Metrology, for
supporting me during this project.

Finally, I thank you, the reader, for trying this approach to professional C++ software development.

—Marc Gregoire

CONTENTS

INTRODUCTION xlvii

PART I: INTRODUCTION TO PROFESSIONAL C++

CHAPTER 1: A CRASH COURSE IN C++ AND THE STANDARD LIBRARY 3

C++ Crash Course 4
The Obligatory “Hello, World” Program 4

Comments 5
Importing Modules 5
Preprocessor Directives 5
The main() Function 8
I/O Streams 8

Namespaces 9
Nested Namespace 11
Namespace Alias 11

Literals 11
Variables 12

Numerical Limits 14
Zero Initialization 15
Casting 15
Floating-Point Numbers 16

Operators 16
Enumerated Types 19

Old-Style Enumerated Types 21
Structs 22
Conditional Statements 23

if/else Statements 23
switch Statements 24

The Conditional Operator 25
Logical Evaluation Operators 26
Three-Way Comparisons 27
Functions 28

Function Return Type Deduction 30
Current Function’s Name 30
Function Overloading 30

Contents

xvi

Attributes 30
[[nodiscard]] 31
[[maybe_unused]] 31
[[noreturn]] 32
[[deprecated]] 32
[[likely]] and [[unlikely]] 33

C-Style Arrays 33
std::array 35
std::vector 36
std::pair 36
std::optional 37
Structured Bindings 38
Loops 38

The while Loop 38
The do/while Loop 39
The for Loop 39
The Range-Based for Loop 39

Initializer Lists 40
Strings in C++ 40
C++ as an Object-Oriented Language 41

Defining Classes 41
Using Classes 44

Scope Resolution 44
Uniform Initialization 45

Designated Initializers 48
Pointers and Dynamic Memory 49

The Stack and the Free Store 49
Working with Pointers 50
Dynamically Allocated Arrays 51
Null Pointer Constant 52

The Use of const 53
const as a Qualifier for a Type 53
const Methods 55

The constexpr Keyword 56
The consteval Keyword 57
References 58

Reference Variables 58
Reference Data Members 61
Reference Parameters 61
Reference Return Values 64
Deciding Between References and Pointers 64

Contents

xvii

const_cast() 68
Exceptions 69
Type Aliases 70
typedefs 71
Type Inference 72

The auto Keyword 72
The decltype Keyword 75

The Standard Library 75
Your First Bigger C++ Program 75

An Employee Records System 76
The Employee Class 76

Employee.cppm 76
Employee.cpp 78
EmployeeTest.cpp 79

The Database Class 80
Database.cppm 80
Database.cpp 81
DatabaseTest.cpp 82

The User Interface 82
Evaluating the Program 85

summary 85
exercises 85

CHAPTER 2: WORKING WITH STRINGS AND STRING VIEWS 87

Dynamic strings 88
C-Style Strings 88
String Literals 90

Raw String Literals 90
The C++ std::string Class 92

What Is Wrong with C-Style Strings? 92
Using the string Class 92
std::string Literals 95
CTAD with std::vector and Strings 96

Numeric Conversions 96
High-Level Numeric Conversions 96
Low-Level Numeric Conversions 97

The std::string_view Class 100
std::string_view and Temporary Strings 102
std::string_view Literals 102

Nonstandard Strings 102
string Formatting 103

Format Specifiers 104

Contents

xviii

width 104
[fill]align 105
sign 105
105
type 106
precision 107
0 107

Format Specifier Errors 107
Support for Custom Types 107

summary 110
exercises 110

CHAPTER 3: CODING WITH STYLE 111

the Importance of Looking Good 111
Thinking Ahead 112
Elements of Good Style 112

Documenting Your Code 112
Reasons to Write Comments 112

Commenting to Explain Usage 112
Commenting to Explain Complicated Code 115
Commenting to Convey Meta-information 116

Commenting Styles 117
Commenting Every Line 117
Prefix Comments 118
Fixed-Format Comments 119
Ad Hoc Comments 120
Self-Documenting Code 122

Decomposition 122
Decomposition Through Refactoring 123
Decomposition by Design 124
Decomposition in This Book 124

naming 124
Choosing a Good Name 124
Naming Conventions 125

Counters 125
Prefixes 126
Hungarian Notation 126
Getters and Setters 127
Capitalization 127
Namespaced Constants 127

Using Language Features with style 127
Use Constants 128

Contents

xix

Use References Instead of Pointers 128
Use Custom Exceptions 129

Formatting 129
The Curly Brace Alignment Debate 130
Coming to Blows over Spaces and Parentheses 131
Spaces, Tabs, and Line Breaks 131

stylistic Challenges 132
summary 132
exercises 133

PART II: PROFESSIONAL C++ SOFTWARE DESIGN

CHAPTER 4: DESIGNING PROFESSIONAL C++ PROGRAMS 137

What Is Programming Design? 138
the Importance of Programming Design 139
Designing for C++ 141
two Rules for Your own C++ Designs 142

Abstraction 142
Benefiting from Abstraction 142
Incorporating Abstraction in Your Design 143

Reuse 144
Writing Reusable Code 144
Reusing Designs 145

Reusing existing Code 146
A Note on Terminology 146
Deciding Whether to Reuse Code or Write it Yourself 147

Advantages to Reusing Code 147
Disadvantages to Reusing Code 148
Putting It Together to Make a Decision 149

Guidelines for Choosing a Library to Reuse 149
Understand the Capabilities and Limitations 149
Understand the Learning Cost 150
Understand the Performance 150
Understand Platform Limitations 153
Understand Licensing 153
Understand Support and Know Where to Find Help 154
Prototype 154
Open-Source Libraries 155
The C++ Standard Library 157

Contents

xx

Designing a Chess Program 157
Requirements 158
Design Steps 158

Divide the Program into Subsystems 158
Choose Threading Models 160
Specify Class Hierarchies for Each Subsystem 161
Specify Classes, Data Structures, Algorithms, and Patterns for
Each Subsystem 162
Specify Error Handling for Each Subsystem 165

summary 166
exercises 166

CHAPTER 5: DESIGNING WITH OBJECTS 169

Am I thinking Procedurally? 170
the object-oriented Philosophy 170

Classes 170
Components 171
Properties 171
Behaviors 172
Bringing It All Together 172

Living in a World of Classes 173
Over-Classification 173
Overly General Classes 174

Class Relationships 175
The Has-a Relationship 175
The Is-a Relationship (Inheritance) 176

Inheritance Techniques 177
Polymorphism 178

The Fine Line Between Has-a and Is-a 178
The Not-a Relationship 181
Hierarchies 182
Multiple Inheritance 183
Mixin Classes 184

summary 185
exercises 185

CHAPTER 6: DESIGNING FOR REUSE 187

the Reuse Philosophy 188
How to Design Reusable Code 189

Use Abstraction 189
Structure Your Code for Optimal Reuse 191

Avoid Combining Unrelated or Logically Separate Concepts 191

Contents

xxi

Use Templates for Generic Data Structures and Algorithms 193
Provide Appropriate Checks and Safeguards 195
Design for Extensibility 196

Design Usable Interfaces 198
Consider the Audience 198
Consider the Purpose 199
Design Interfaces That Are Easy to Use 200
Design General-Purpose Interfaces 204
Reconciling Generality and Ease of Use 205

Designing a Successful Abstraction 205
The SOLID Principles 206

summary 207
exercises 207

PART III: C++ CODING THE PROFESSIONAL WAY

CHAPTER 7: MEMORY MANAGEMENT 211

Working with Dynamic Memory 212
How to Picture Memory 212
Allocation and Deallocation 213

Using new and delete 213
What About My Good Friend malloc? 214
When Memory Allocation Fails 215

Arrays 215
Arrays of Primitive Types 215
Arrays of Objects 218
Deleting Arrays 218
Multidimensional Arrays 219

Working with Pointers 223
A Mental Model for Pointers 223
Casting with Pointers 224

Array-Pointer Duality 224
Arrays Are Pointers! 224
Not All Pointers Are Arrays! 226

Low-Level Memory operations 227
Pointer Arithmetic 227
Custom Memory Management 228
Garbage Collection 228
Object Pools 229

Common Memory Pitfalls 229
Underallocating Data Buffers and Out-of-Bounds Memory Access 229

Contents

xxii

Memory Leaks 231
Finding and Fixing Memory Leaks in Windows with Visual C++ 232
Finding and Fixing Memory Leaks in Linux with Valgrind 233

Double-Deletion and Invalid Pointers 234
smart Pointers 234

unique_ptr 235
Creating unique_ptrs 236
Using unique_ptrs 237
unique_ptr and C-Style Arrays 238
Custom Deleters 239

shared_ptr 239
Creating and Using shared_ptrs 239
The Need for Reference Counting 241
Casting a shared_ptr 242
Aliasing 242

weak_ptr 243
Passing to Functions 244
Returning from Functions 244
enable_shared_from_this 244
The Old and Removed auto_ptr 245

summary 246
exercises 246

CHAPTER 8: GAINING PROFICIENCY WITH CLASSES
AND OBJECTS 249

Introducing the spreadsheet example 250
Writing Classes 250

Class Definitions 250
Class Members 251
Access Control 251
Order of Declarations 252
In-Class Member Initializers 253

Defining Methods 253
Accessing Data Members 254
Calling Other Methods 254
The this Pointer 255

Using Objects 257
Objects on the Stack 257
Objects on the Free Store 257

Understanding object Life Cycles 258
Object Creation 258

Writing Constructors 259
Using Constructors 260

Contents

xxiii

Providing Multiple Constructors 260
Default Constructors 261
Constructor Initializers 265
Copy Constructors 269
Initializer-List Constructors 271
Delegating Constructors 273
Converting Constructors and Explicit Constructors 273
Summary of Compiler-Generated Constructors 275

Object Destruction 276
Assigning to Objects 277

Declaring an Assignment Operator 278
Defining an Assignment Operator 278
Explicitly Defaulted and Deleted Assignment Operator 280

Compiler-Generated Copy Constructor and Copy Assignment Operator 280
Distinguishing Copying from Assignment 280

Objects as Return Values 280
Copy Constructors and Object Members 281

summary 282
exercises 282

CHAPTER 9: MASTERING CLASSES AND OBJECTS 283

Friends 284
Dynamic Memory Allocation in objects 285

The Spreadsheet Class 285
Freeing Memory with Destructors 288
Handling Copying and Assignment 289

The Spreadsheet Copy Constructor 291
The Spreadsheet Assignment Operator 291
Disallowing Assignment and Pass-by-Value 294

Handling Moving with Move Semantics 295
Rvalue References 295
Implementing Move Semantics 297
Testing the Spreadsheet Move Operations 301
Implementing a Swap Function with Move Semantics 303
Using std::move() in Return Statements 303
Optimal Way to Pass Arguments to Functions 304

Rule of Zero 305
More About Methods 306

static Methods 306
const Methods 307

mutable Data Members 308

Contents

xxiv

Method Overloading 308
Overloading Based on const 309
Explicitly Deleting Overloads 310
Ref-Qualified Methods 310

Inline Methods 311
Default Arguments 313

Different Kinds of Data Members 314
static Data Members 314

Inline Variables 314
Accessing static Data Members within Class Methods 315
Accessing static Data Members Outside Methods 316

const static Data Members 316
Reference Data Members 317

nested Classes 318
enumerated types Inside Classes 319
operator overloading 320

Example: Implementing Addition for SpreadsheetCells 320
First Attempt: The add Method 320
Second Attempt: Overloaded operator+ as a Method 321
Third Attempt: Global operator+ 322

Overloading Arithmetic Operators 324
Overloading the Arithmetic Shorthand Operators 324

Overloading Comparison Operators 325
Compiler-Generated Comparison Operators 328

Building Types with Operator Overloading 330
Building stable Interfaces 330

Using Interface and Implementation Classes 330
summary 334
exercises 335

CHAPTER 10: DISCOVERING INHERITANCE TECHNIQUES 337

Building Classes with Inheritance 338
Extending Classes 338

A Client’s View of Inheritance 339
A Derived Class’s View of Inheritance 340
Preventing Inheritance 341

Overriding Methods 342
The virtual Keyword 342
Syntax for Overriding a Method 342
A Client’s View of Overridden Methods 343
The override Keyword 344

Contents

xxv

The Truth About virtual 346
Preventing Overriding 350

Inheritance for Reuse 350
The WeatherPrediction Class 350
Adding Functionality in a Derived Class 351
Replacing Functionality in a Derived Class 352

Respect Your Parents 353
Parent Constructors 353
Parent Destructors 355
Referring to Parent Names 356
Casting Up and Down 358

Inheritance for Polymorphism 360
Return of the Spreadsheet 360
Designing the Polymorphic Spreadsheet Cell 360
The SpreadsheetCell Base Class 361

A First Attempt 361
Pure Virtual Methods and Abstract Base Classes 362

The Individual Derived Classes 363
StringSpreadsheetCell Class Definition 363
StringSpreadsheetCell Implementation 363
DoubleSpreadsheetCell Class Definition and Implementation 364

Leveraging Polymorphism 364
Future Considerations 365

Multiple Inheritance 367
Inheriting from Multiple Classes 367
Naming Collisions and Ambiguous Base Classes 368

Name Ambiguity 368
Ambiguous Base Classes 369
Uses for Multiple Inheritance 371

Interesting and obscure Inheritance Issues 371
Changing the Overridden Method’s Return Type 371
Adding Overloads of Virtual Base Class Methods to Derived Classes 373
Inherited Constructors 374

Hiding of Inherited Constructors 375
Inherited Constructors and Multiple Inheritance 376
Initialization of Data Members 377

Special Cases in Overriding Methods 378
The Base Class Method Is static 378
The Base Class Method Is Overloaded 379
The Base Class Method Is private 380
The Base Class Method Has Default Arguments 382

Contents

xxvi

The Base Class Method Has a Different Access Specification 383
Copy Constructors and Assignment Operators in Derived Classes 385
Run-Time Type Facilities 386
Non-public Inheritance 388
Virtual Base Classes 389

Casts 390
static_cast() 390
reinterpret_cast() 391
std::bit_cast() 392
dynamic_cast() 393
Summary of Casts 394

summary 394
exercises 395

CHAPTER 11: ODDS AND ENDS 397

Modules 397
Module Interface Files 399
Module Implementation Files 401
Splitting Interface from Implementation 402
Visibility vs. Reachability 403
Submodules 404
Module Partitions 405

Implementation Partitions 407
Header Units 408

Header Files 408
Duplicate Definitions 409
Circular Dependencies 409
Querying Existence of Headers 410

Feature test Macros for Core Language Features 410
the static Keyword 411

static Data Members and Methods 411
static Linkage 411

The extern Keyword 413
static Variables in Functions 414
Order of Initialization of Nonlocal Variables 415
Order of Destruction of Nonlocal Variables 415

Contents

xxvii

C Utilities 415
Variable-Length Argument Lists 415

Accessing the Arguments 416
Why You Shouldn’t Use C-Style Variable-Length Argument Lists 417

Preprocessor Macros 417
summary 419
exercises 419

CHAPTER 12: WRITING GENERIC CODE WITH TEMPLATES 421

overview of templates 422
Class templates 422

Writing a Class Template 423
Coding Without Templates 423
A Template Grid Class 426
Using the Grid Template 430

How the Compiler Processes Templates 431
Selective Instantiation 431
Template Requirements on Types 432

Distributing Template Code Between Files 432
Method Definitions in Same File as Class Template Definition 433
Method Definitions in Separate File 433

Template Parameters 433
Non-type Template Parameters 434
Default Values for Type Parameters 436
Class Template Argument Deduction 436

Method Templates 438
Method Templates with Non-type Parameters 440

Class Template Specialization 442
Deriving from Class Templates 445
Inheritance vs. Specialization 446
Alias Templates 447

Function templates 447
Function Template Overloading 449
Friend Function Templates of Class Templates 449
More on Template Parameter Deduction 451
Return Type of Function Templates 451
Abbreviated Function Template Syntax 453

Contents

xxviii

Variable templates 454
Concepts 454

Syntax 455
Constraints Expression 455

Requires Expressions 455
Combining Concept Expressions 457

Predefined Standard Concepts 457
Type-Constrained auto 458
Type Constraints and Function Templates 458

Constraint Subsumption 460
Type Constraints and Class Templates 461
Type Constraints and Class Methods 461
Type Constraints and Template Specialization 462

summary 463
exercises 463

CHAPTER 13: DEMYSTIFYING C++ I/O 465

Using streams 466
What Is a Stream, Anyway? 466
Stream Sources and Destinations 467
Output with Streams 468

Output Basics 468
Methods of Output Streams 469
Handling Output Errors 470
Output Manipulators 471

Input with Streams 473
Input Basics 473
Handling Input Errors 475
Input Methods 476
Input Manipulators 480

Input and Output with Objects 481
Custom Manipulators 482

string streams 482
File streams 484

Text Mode vs. Binary Mode 485
Jumping Around with seek() and tell() 485
Linking Streams Together 487

Bidirectional I/o 488
Filesystem support Library 490

Path 490
Directory Entry 491

Contents

xxix

Helper Functions 492
Directory Iteration 492

summary 493
exercises 493

CHAPTER 14: HANDLING ERRORS 495

errors and exceptions 496
What Are Exceptions, Anyway? 496
Why Exceptions in C++ Are a Good Thing 496
Recommendation 498

exception Mechanics 498
Throwing and Catching Exceptions 499
Exception Types 501
Catching Exception Objects as Reference-to-const 502
Throwing and Catching Multiple Exceptions 503

Matching and const 505
Matching Any Exception 505

Uncaught Exceptions 505
noexcept Specifier 507
noexcept(expression) Specifier 508
noexcept(expression) Operator 508
Throw Lists 508

exceptions and Polymorphism 509
The Standard Exception Hierarchy 509
Catching Exceptions in a Class Hierarchy 510
Writing Your Own Exception Classes 512

Source Location 514
Nested Exceptions 517

Rethrowing exceptions 519
stack Unwinding and Cleanup 520

Use Smart Pointers 521
Catch, Cleanup, and Rethrow 522

Common error-Handling Issues 523
Memory Allocation Errors 523

Non-throwing new 524
Customizing Memory Allocation Failure Behavior 524

Errors in Constructors 526
Function-Try-Blocks for Constructors 528
Errors in Destructors 531

summary 531
exercises 532

Contents

xxx

CHAPTER 15: OVERLOADING C++ OPERATORS 535

overview of operator overloading 536
Why Overload Operators? 536
Limitations to Operator Overloading 536
Choices in Operator Overloading 537

Method or Global Function 537
Choosing Argument Types 538
Choosing Return Types 538
Choosing Behavior 539

Operators You Shouldn’t Overload 539
Summary of Overloadable Operators 540
Rvalue References 544
Precedence and Associativity 545
Relational Operators 546

overloading the Arithmetic operators 547
Overloading Unary Minus and Unary Plus 547
Overloading Increment and Decrement 547

overloading the Bitwise and Binary Logical operators 548
overloading the Insertion and extraction operators 549
overloading the subscripting operator 550

Providing Read-Only Access with operator[] 553
Non-integral Array Indices 555

overloading the Function Call operator 555
overloading the Dereferencing operators 557

Implementing operator* 558
Implementing operator–> 558
What in the World Are operator.* and operator–>*? 559

Writing Conversion operators 559
Operator auto 560
Solving Ambiguity Problems with Explicit Conversion Operators 561
Conversions for Boolean Expressions 561

overloading the Memory Allocation and Deallocation operators 563
How new and delete Really Work 564

The New-Expression and operator new 564
The Delete-Expression and operator delete 565

Overloading operator new and operator delete 565
Explicitly Deleting/Defaulting operator new and operator delete 568
Overloading operator new and operator delete with Extra Parameters 568
Overloading operator delete with Size of Memory as Parameter 569

overloading User-Defined Literal operators 570

Contents

xxxi

Cooked-Mode Literal Operator 570
Raw-Mode Literal Operator 571
Standard User-Defined Literals 571

summary 572
exercises 572

CHAPTER 16: OVERVIEW OF THE C++ STANDARD LIBRARY 573

Coding Principles 574
Use of Templates 574
Use of Operator Overloading 575

overview of the C++ standard Library 575
Strings 575
Regular Expressions 576
I/O Streams 576
Smart Pointers 576
Exceptions 576
Numerics Library 577
Time and Date Utilities 579
Random Numbers 579
Initializer Lists 579
Pair and Tuple 579
Vocabulary Types 580
Function Objects 580
Filesystem 580
Multithreading 580
Type Traits 581
Standard Integer Types 581
Standard Library Feature Test Macros 581
<version> 582
Source Location 582
Containers 582

vector 583
list 584
forward_list 584
deque 584
array 584
span 585
queue 585
priority_queue 585
stack 586

Contents

xxxii

set and multiset 586
map and multimap 587
Unordered Associative Containers/Hash Tables 587
bitset 588
Summary of Standard Library Containers 588

Algorithms 591
Nonmodifying Sequence Algorithms 591
Modifying Sequence Algorithms 593
Operational Algorithms 595
Swap Algorithms 595
Partition Algorithms 595
Sorting Algorithms 596
Binary Search Algorithms 597
Set Algorithms 597
Heap Algorithms 598
Minimum/Maximum Algorithms 598
Numerical Processing Algorithms 599
Permutation Algorithms 600
Choosing an Algorithm 600

Ranges Library 601
What’s Missing from the Standard Library 601

summary 601
exercises 601

CHAPTER 17: UNDERSTANDING ITERATORS AND
THE RANGES LIBRARY 603

Iterators 604
Getting Iterators for Containers 606
Iterator Traits 608
Examples 609

stream Iterators 610
Output Stream Iterator 610
Input Stream Iterator 611

Iterator Adapters 612
Insert Iterators 612
Reverse Iterators 614
Move Iterators 615

Ranges 616
Range-Based Algorithms 617

Projection 618
Views 619

Contents

xxxiii

Modifying Elements Through a View 622
Mapping Elements 623

Range Factories 623
Input Streams as Views 625

summary 625
exercises 626

CHAPTER 18: STANDARD LIBRARY CONTAINERS 627

Containers overview 628
Requirements on Elements 628
Exceptions and Error Checking 630

sequential Containers 631
vector 631

vector Overview 631
vector Details 633
Move Semantics 646
vector Example: A Round-Robin Class 647

The vector<bool> Specialization 652
deque 653
list 653

Accessing Elements 653
Iterators 654
Adding and Removing Elements 654
list Size 654
Special list Operations 654
list Example: Determining Enrollment 656

forward_list 657
array 660
span 661

Container Adapters 663
queue 663

queue Operations 663
queue Example: A Network Packet Buffer 664

priority_queue 666
priority_queue Operations 666
priority_queue Example: An Error Correlator 667

stack 668
stack Operations 668
stack Example: Revised Error Correlator 669

ordered Associative Containers 669
The pair Utility Class 669
map 670

Contents

xxxiv

Constructing maps 670
Inserting Elements 671
map Iterators 674
Looking Up Elements 675
Removing Elements 675
Nodes 676
map Example: Bank Account 676

multimap 679
multimap Example: Buddy Lists 680

set 682
set Example: Access Control List 682

multiset 684
Unordered Associative Containers or Hash tables 684

Hash Functions 684
unordered_map 686

unordered_map Example: Phone Book 689
unordered_multimap 690
unordered_set/unordered_multiset 691

other Containers 691
Standard C-Style Arrays 691
Strings 692
Streams 693
bitset 693

bitset Basics 693
Bitwise Operators 694
bitset Example: Representing Cable Channels 694

summary 697
exercises 698

CHAPTER 19: FUNCTION POINTERS, FUNCTION OBJECTS,
AND LAMBDA EXPRESSIONS 699

Function Pointers 700
Pointers to Methods (and Data Members) 702
std::function 703
Function objects 705

Writing Your First Function Object 705
Function Objects in the Standard Library 706

Arithmetic Function Objects 706
Comparison Function Objects 707
Logical Function Objects 709
Bitwise Function Objects 709
Adapter Function Objects 709

Contents

xxxv

Lambda expressions 713
Syntax 713
Lambda Expressions as Parameters 718
Generic Lambda Expressions 719
Lambda Capture Expressions 719
Templated Lambda Expressions 720
Lambda Expressions as Return Type 721
Lambda Expressions in Unevaluated Contexts 722
Default Construction, Copying, and Assigning 722

Invokers 722
summary 723
exercises 723

CHAPTER 20: MASTERING STANDARD LIBRARY ALGORITHMS 725

overview of Algorithms 726
The find and find_if Algorithms 726
The accumulate Algorithm 729
Move Semantics with Algorithms 730
Algorithm Callbacks 730

Algorithm Details 731
Non-modifying Sequence Algorithms 731

Search Algorithms 731
Specialized Searchers 733
Comparison Algorithms 733
Counting Algorithms 736

Modifying Sequence Algorithms 737
generate 737
transform 738
copy 739
move 740
replace 742
erase 742
remove 743
unique 744
shuffle 745
sample 745
reverse 746
Shifting Elements 746

Operational Algorithms 747
for_each 747
for_each_n 749

Contents

xxxvi

Partition Algorithms 749
Sorting Algorithms 750
Binary Search Algorithms 751
Set Algorithms 752
Minimum/Maximum Algorithms 755
Parallel Algorithms 756
Constrained Algorithms 758
Numerical Processing Algorithms 758

iota 759
Reduce Algorithms 759
Scan Algorithms 760

summary 761
exercises 761

CHAPTER 21: STRING LOCALIZATION AND REGULAR
EXPRESSIONS 763

Localization 763
Wide Characters 764
Localizing String Literals 764
Non-Western Character Sets 765
Locales and Facets 767

Using Locales 767
Global Locale 769
Character Classification 769
Character Conversion 769
Using Facets 770
Conversions 771

Regular expressions 772
ECMAScript Syntax 773

Anchors 773
Wildcards 773
Alternation 773
Grouping 774
Repetition 774
Precedence 775
Character Set Matches 775
Word Boundaries 777
Back References 778
Lookahead 778
Regular Expressions and Raw String Literals 778
Common Regular Expressions 779

The regex Library 779

Contents

xxxvii

regex_match() 781
regex_match() Example 781

regex_search() 783
regex_search() Example 784

regex_iterator 784
regex_iterator Example 785

regex_token_iterator 785
regex_token_iterator Examples 786

regex_replace() 788
regex_replace() Examples 789

summary 790
exercises 791

CHAPTER 22: DATE AND TIME UTILITIES 793

Compile-time Rational numbers 794
Duration 796
Clock 801
time Point 802
Date 804
time Zone 807
summary 808
exercises 808

CHAPTER 23: RANDOM NUMBER FACILITIES 809

C-style Random number Generation 810
Random number engines 811
Random number engine Adapters 813
Predefined engines and engine Adapters 813
Generating Random numbers 814
Random number Distributions 816
summary 819
exercises 819

CHAPTER 24: ADDITIONAL LIBRARY UTILITIES 821

Vocabulary types 821
variant 821
any 823

tuples 824
Decompose Tuples 826

Structured Bindings 827
tie 827

Contents

xxxviii

Concatenation 828
Comparisons 828
make_from_tuple 829
apply 829

summary 829
exercises 830

PART IV: MASTERING ADVANCED FEATURES OF C++

CHAPTER 25: CUSTOMIZING AND EXTENDING
THE STANDARD LIBRARY 833

Allocators 834
extending the standard Library 835

Why Extend the Standard Library? 835
Writing a Standard Library Algorithm 836

find_all() 836
Writing a Standard Library Container 837

A Basic Directed Graph 837
Making directed_graph a Standard Library Container 848
Adding Support for Allocators 866
Improving graph_node 871
Additional Standard Library-Like Functionality 872
Further Improvements 874
Other Container Types 874

summary 875
exercises 875

CHAPTER 26: ADVANCED TEMPLATES 877

More About template Parameters 878
More About Template Type Parameters 878
Introducing Template Template Parameters 880
More About Non-type Template Parameters 882

Class template Partial specialization 884
emulating Function Partial specialization with overloading 888
template Recursion 889

An N-Dimensional Grid: First Attempt 889
A Real N-Dimensional Grid 890

Variadic templates 892
Type-Safe Variable-Length Argument Lists 893

Contents

xxxix

Variable Number of Mixin Classes 895
Fold Expressions 896

Metaprogramming 898
Factorial at Compile Time 898
Loop Unrolling 899
Printing Tuples 900

constexpr if 902
Using a Compile-Time Integer Sequence with Folding 903

Type Traits 903
Using Type Categories 905
Using Type Relationships 907
Using the conditional Type Trait 907
Using enable_if 909
Using constexpr if to Simplify enable_if Constructs 910
Logical Operator Traits 912
Static Assertions 912

Metaprogramming Conclusion 913
summary 913
exercises 913

CHAPTER 27: MULTITHREADED PROGRAMMING WITH C++ 915

Introduction 916
Race Conditions 918
Tearing 919
Deadlocks 919
False-Sharing 920

threads 921
Thread with Function Pointer 921
Thread with Function Object 922
Thread with Lambda 924
Thread with Member Function 924
Thread Local Storage 924
Canceling Threads 925
Automatically Joining Threads 925
Retrieving Results from Threads 926
Copying and Rethrowing Exceptions 926

Atomic operations Library 929
Atomic Operations 931
Atomic Smart Pointers 932
Atomic References 932
Using Atomic Types 933
Waiting on Atomic Variables 935

Contents

xl

Mutual exclusion 936
Mutex Classes 936

Spinlock 936
Non-timed Mutex Classes 937
Timed Mutex Classes 939

Locks 939
lock_guard 939
unique_lock 940
shared_lock 941
Acquiring Multiple Locks at Once 941
scoped_lock 942

std::call_once 942
Examples Using Mutual Exclusion Objects 943

Thread-Safe Writing to Streams 943
Using Timed Locks 945
Double-Checked Locking 946

Condition Variables 947
Spurious Wake-Ups 948
Using Condition Variables 949

Latches 950
Barriers 951
semaphores 951
Futures 952

std::promise and std::future 953
std::packaged_task 954
std::async 955
Exception Handling 956
std::shared_future 956

example: Multithreaded Logger Class 958
thread Pools 962
Coroutines 963
threading Design and Best Practices 965
summary 966
exercises 966

PART V: C++ SOFTWARE ENGINEERING

CHAPTER 28: MAXIMIZING SOFTWARE ENGINEERING METHODS 971

the need for Process 972
software Life Cycle Models 973

The Waterfall Model 973

Contents

xli

Benefits of the Waterfall Model 974
Drawbacks of the Waterfall Model 974

Sashimi Model 975
Spiral-like Models 975

Benefits of a Spiral-like Model 976
Drawbacks of a Spiral-like Model 977

Agile 978
software engineering Methodologies 978

The Unified Process 979
The Rational Unified Process 980

RUP as a Product 980
RUP as a Process 980
RUP in Practice 981

Scrum 981
Roles 981
The Process 982
Benefits of Scrum 983
Drawbacks of Scrum 983

eXtreme Programming 984
XP in Theory 984
XP in Practice 988

Software Triage 988
Building Your own Process and Methodology 989

Be Open to New Ideas 989
Bring New Ideas to the Table 989
Recognize What Works and What Doesn’t Work 989
Don’t Be a Renegade 989

source Code Control 990
summary 992
exercises 992

CHAPTER 29: WRITING EFFICIENT C++ 993

overview of Performance and efficiency 994
Two Approaches to Efficiency 994
Two Kinds of Programs 994
Is C++ an Inefficient Language? 994

Language-Level efficiency 995
Handle Objects Efficiently 996

Pass-by-Value or Pass-by-Reference 996
Return-by-Value or Return-by-Reference 998
Catch Exceptions by Reference 998

Contents

xlii

Use Move Semantics 998
Avoid Creating Temporary Objects 998
Return-Value Optimization 999

Pre-allocate Memory 1000
Use Inline Methods and Functions 1001

Design-Level efficiency 1001
Cache Where Necessary 1002
Use Object Pools 1003

An Object Pool Implementation 1003
Using the Object Pool 1006

Profiling 1008
Profiling Example with gprof 1009

First Design Attempt 1009
Profiling the First Design Attempt 1012
Second Design Attempt 1014
Profiling the Second Design Attempt 1015

Profiling Example with Visual C++ 2019 1016
summary 1019
exercises 1019

CHAPTER 30: BECOMING ADEPT AT TESTING 1021

Quality Control 1022
Whose Responsibility Is Testing? 1022
The Life Cycle of a Bug 1022
Bug-Tracking Tools 1023

Unit testing 1025
Approaches to Unit Testing 1026
The Unit Testing Process 1026

Define the Granularity of Your Tests 1027
Brainstorm the Individual Tests 1028
Create Sample Data and Results 1029
Write the Tests 1029
Run the Tests 1030

Unit Testing in Action 1031
Introducing the Microsoft Visual C++ Testing Framework 1031
Writing the First Test 1033
Building and Running Tests 1034
Negative Tests 1034
Adding the Real Tests 1035

Contents

xliii

Debugging Tests 1038
Basking in the Glorious Light of Unit Test Results 1038

Fuzz testing 1039
Higher-Level testing 1039

Integration Tests 1039
Sample Integration Tests 1039
Methods of Integration Testing 1040

System Tests 1041
Regression Tests 1041

tips for successful testing 1042
summary 1043
exercises 1043

CHAPTER 31: CONQUERING DEBUGGING 1045

the Fundamental Law of Debugging 1046
Bug taxonomies 1046
Avoiding Bugs 1046
Planning for Bugs 1047

Error Logging 1047
Debug Traces 1049

Debug Mode 1049
Ring Buffers 1053

Assertions 1057
Crash Dumps 1058

Debugging techniques 1059
Reproducing Bugs 1059
Debugging Reproducible Bugs 1060
Debugging Nonreproducible Bugs 1060
Debugging Regressions 1061
Debugging Memory Problems 1062

Categories of Memory Errors 1062
Tips for Debugging Memory Errors 1065

Debugging Multithreaded Programs 1066
Debugging Example: Article Citations 1067

Buggy Implementation of an ArticleCitations Class 1067
Testing the ArticleCitations Class 1070

Lessons from the ArticleCitations Example 1079
summary 1079
exercises 1080

Contents

xliv

CHAPTER 32: INCORPORATING DESIGN TECHNIQUES
AND FRAMEWORKS 1083

“I Can never Remember How to. . .” 1084
. . .Write a Class 1084
. . .Derive from an Existing Class 1086
. . .Write a Lambda Expression 1086
. . .Use the Copy-and-Swap Idiom 1087
. . .Throw and Catch Exceptions 1088
. . .Write to a File 1089
. . .Read from a File 1089
. . .Write a Class Template 1090
. . .Constrain Template Parameters 1090

there Must Be a Better Way 1091
Resource Acquisition Is Initialization 1091
Double Dispatch 1093

Attempt #1: Brute Force 1094
Attempt #2: Single Polymorphism with Overloading 1095
Attempt #3: Double Dispatch 1096

Mixin Classes 1098
Using Multiple Inheritance 1098
Using Class Templates 1100

object-oriented Frameworks 1101
Working with Frameworks 1101
The Model-View-Controller Paradigm 1102

summary 1103
exercises 1103

CHAPTER 33: APPLYING DESIGN PATTERNS 1105

Dependency Injection 1106
Example: A Logging Mechanism 1106
Implementation of a Dependency-Injected Logger 1106
Using Dependency Injection 1108

the Abstract Factory Pattern 1109
Example: A Car Factory Simulation 1109
Implementation of an Abstract Factory 1110
Using an Abstract Factory 1111

the Factory Method Pattern 1112
Example: A Second Car Factory Simulation 1112
Implementation of a Factory 1114
Using a Factory 1115

Contents

xlv

Other Types of Factories 1117
Other Uses of Factories 1117

the Adapter Pattern 1118
Example: Adapting a Logger Class 1118
Implementation of an Adapter 1119
Using an Adapter 1120

the Proxy Pattern 1120
Example: Hiding Network Connectivity Issues 1121
Implementation of a Proxy 1121
Using a Proxy 1122

the Iterator Pattern 1123
the observer Pattern 1124

Example: Exposing Events from Subjects 1124
Implementation of an Observable 1124
Using an Observer 1125

the Decorator Pattern 1126
Example: Defining Styles in Web Pages 1127
Implementation of a Decorator 1127
Using a Decorator 1128

the Chain of Responsibility Pattern 1129
Example: Event Handling 1129
Implementation of a Chain of Responsibility 1129
Using a Chain of Responsibility 1131

the singleton Pattern 1132
Example: A Logging Mechanism 1132
Implementation of a Singleton 1133
Using a Singleton 1135

summary 1135
exercises 1135

CHAPTER 34: DEVELOPING CROSS-PLATFORM AND CROSS-
LANGUAGE APPLICATIONS 1137

Cross-Platform Development 1138
Architecture Issues 1138

Size of Integers 1138
Binary Compatibility 1139
Address Sizes 1140
Byte Order 1140

Implementation Issues 1142
Compiler Quirks and Extensions 1142

Contents

xlvi

Library Implementations 1142
Handling Different Implementations 1143

Platform-Specific Features 1143
Cross-Language Development 1145

Mixing C and C++ 1145
Shifting Paradigms 1145
Linking with C Code 1149
Calling C++ Code from C# 1151
C++/CLI to Use C# Code from C++ and C++ from C# 1152
Calling C++ Code from Java with JNI 1154
Calling Scripts from C++ Code 1156
Calling C++ Code from Scripts 1156

A Practical Example: Encrypting Passwords 1157
Calling Assembly Code from C++ 1159

summary 1160
exercises 1160

PART VI: APPENDICES

APPENDIX A: C++ INTERVIEWS 1165

APPENDIX B: ANNOTATED BIBLIOGRAPHY 1191

APPENDIX C: STANDARD LIBRARY HEADER FILES 1203

APPENDIX D: INTRODUCTION TO UML 1213

INDEX 1219

 INTRODUCTION

 The development of C++ started in 1982 by Bjarne Stroustrup, a Danish computer scientist, as the
successor of C with Classes. In 1985, the first edition of The C++ Programming Language book was
released. The first standardized version of C++ was released in 1998, called C++98. In 2003, C++03
came out and contained a few small updates. After that, it was silent for a while, but traction slowly
started building up, resulting in a major update of the language in 2011, called C++11. From then
on, the C++ Standard Committee has been on a three-year cycle to release updated versions, giving
us C++14, C++17, and now C++20. All in all, with the release of C++20 in 2020, C++ is almost 40
years old and still going strong. In most rankings of programming languages in 2020, C++ is in the
top four. It is being used on an extremely wide range of hardware, going from small devices with
embedded microprocessors all the way up to multirack supercomputers. Besides wide hardware
support, C++ can be used to tackle almost any programming job, be it games on mobile platforms,
performance-critical artificial intelligence (AI) and machine learning (ML) software, real-time 3-D
graphics engines, low-level hardware drivers, entire operating systems, and so on. The performance of
C++ programs is hard to match with any other programming language, and as such, it is the de facto
language for writing fast, powerful, and enterprise-class object-oriented programs. As popular as
C++ has become, the language is surprisingly difficult to grasp in full. There are simple, but powerful,
techniques that professional C++ programmers use that don ’ t show up in traditional texts, and there
are useful parts of C++ that remain a mystery even to experienced C++ programmers.

 Too often, programming books focus on the syntax of the language instead of its real-world use. The
typical C++ text introduces a major part of the language in each chapter, explaining the syntax and
providing an example. Professional C++ does not follow this pattern. Instead of giving you just the
nuts and bolts of the language with little practical context, this book will teach you how to use C++
in the real world. It will show you the little-known features that will make your life easier, as well as
the programming techniques that separate novices from professional programmers.

 WHO THIS BOOK IS FOR

 Even if you have used the language for years, you might still be unfamiliar with the more advanced
features of C++, or you might not be using the full capabilities of the language. Perhaps you write
competent C++ code, but would like to learn more about design and good programming style in C++.
Or maybe you ’ re relatively new to C++ but want to learn the “right” way to program from the start.
This book will meet those needs and bring your C++ skills to the professional level.

 Because this book focuses on advancing from basic or intermediate knowledge of C++ to becoming
a professional C++ programmer, it assumes that you have some knowledge about programming.
Chapter 1, “A Crash Course in C++ and the Standard Library,” covers the basics of C++ as a refresher,
but it is not a substitute for actual training in programming. If you are just starting with C++ but you

INTRODUCTION

xlviii

have significant experience in another programming language such as C, Java, or C#, you should be
able to pick up most of what you need from Chapter 1.

 In any case, you should have a solid foundation in programming fundamentals. You should know
about loops, functions, and variables. You should know how to structure a program, and you should
be familiar with fundamental techniques such as recursion. You should have some knowledge of com-
mon data structures such as queues, and useful algorithms such as sorting and searching. You don ’ t
need to know about object-oriented programming just yet—that is covered in Chapter 5, “Designing
with Objects.”

 You will also need to be familiar with the compiler you will be using to compile your code. Two com-
pilers, Microsoft Visual C++ and GCC, are introduced later in this introduction. For other compilers,
refer to the documentation that came with your compiler.

WHAT THIS BOOK COVERS

Professional C++ uses an approach to C++ programming that will both increase the quality of your
code and improve your programming efficiency. You will find discussions on new C++20 features
throughout this fifth edition. These features are not just isolated to a few chapters or sections; instead,
examples have been updated to use new features when appropriate.

Professional C++ teaches you more than just the syntax and language features of C++. It also
emphasizes programming methodologies, reusable design patterns, and good programming style. The
Professional C++ methodology incorporates the entire software development process, from designing
and writing code to debugging and working in groups. This approach will enable you to master the
C++ language and its idiosyncrasies, as well as take advantage of its powerful capabilities for large-
scale software development.

 Imagine users who have learned all of the syntax of C++ without seeing a single example of its use.
They know just enough to be dangerous! Without examples, they might assume that all code should
go in the main() function of the program or that all variables should be global—practices that are
generally not considered hallmarks of good programming.

 Professional C++ programmers understand the correct way to use the language, in addition to the
syntax. They recognize the importance of good design, the theories of object-oriented programming,
and the best ways to use existing libraries. They have also developed an arsenal of useful code and
reusable ideas.

 By reading and understanding this book, you will become a professional C++ programmer. You will
expand your knowledge of C++ to cover lesser known and often misunderstood language features.
You will gain an appreciation for object-oriented design and acquire top-notch debugging skills.
Perhaps most important, you will finish this book armed with a wealth of reusable ideas that you can
actually apply to your daily work.

 There are many good reasons to make the effort to be a professional C++ programmer as opposed
to a programmer who knows C++. Understanding the true workings of the language will improve
the quality of your code. Learning about different programming methodologies and processes will

INTRODUCTION

xlix

help you to work better with your team. Discovering reusable libraries and common design patterns
will improve your daily efficiency and help you stop reinventing the wheel. All of these lessons will
make you a better programmer and a more valuable employee. While this book can ’ t guarantee you a
promotion, it certainly won ’ t hurt.

 HOW THIS BOOK IS STRUCTURED

 This book is made up of five parts.

 Part I, “Introduction to Professional C++,” begins with a crash course in C++ basics to ensure a foun-
dation of C++ knowledge. Following the crash course, Part I goes deeper into working with strings,
because strings are used extensively in most examples throughout the book. The last chapter of Part I
explores how to write readable C++ code.

 Part II, “Professional C++ Software Design,” discusses C++ design methodologies. You will read about
the importance of design, the object-oriented methodology, and the importance of code reuse.

 Part III, “C++ Coding the Professional Way,” provides a technical tour of C++ from the professional
point of view. You will read about the best ways to manage memory in C++, how to create reusable
classes, and how to leverage important language features such as inheritance. You will also learn
techniques for input and output, error handling, string localization, how to work with regular expres-
sions, and how to structure your code in reusable components called modules. You will read about
how to implement operator overloading, how to write templates, how to put restrictions on template
parameters using concepts, and how to unlock the power of lambda expressions and function objects.
This part also explains the C++ Standard Library, including containers, iterators, ranges, and algo-
rithms. You will also read about some additional libraries that are available in the standard, such as
the libraries to work with time, dates, time zones, random numbers, and the filesystem.

 Part IV, “Mastering Advanced Features of C++,” demonstrates how you can get the most out of
C++. This part of the book exposes the mysteries of C++ and describes how to use some of its more
advanced features. You will read about how to customize and extend the C++ Standard Library to
your needs, advanced details on template programming, including template metaprogramming, and
how to use multithreading to take advantage of multiprocessor and multicore systems.

 Part V, “C++ Software Engineering,” focuses on writing enterprise-quality software. You ’ ll read about
the engineering practices being used by programming organizations today; how to write efficient C++
code; software testing concepts, such as unit testing and regression testing; techniques used to debug
C++ programs; how to incorporate design techniques, frameworks, and conceptual object-oriented
design patterns into your own code; and solutions for cross-language and cross-platform code.

 The book concludes with a useful chapter-by-chapter guide to succeeding in a C++ technical inter-
view, an annotated bibliography, a summary of the C++ header files available in the standard, and a
brief introduction to the Unified Modeling Language (UML).

 This book is not a reference of every single class, method, and function available in C++. The book
C++17 Standard Library Quick Reference by Peter Van Weert and Marc Gregoire (Apress, 2019.

INTRODUCTION

l

ISBN: 978-1-4842-4923-9) is a condensed reference to all essential data structures, algorithms, and
functions provided by the C++ Standard Library up until the C++17 standard. Appendix B lists a
couple more references. Two excellent online references are:

➤ cppreference.com : You can use this reference online or download an offl ine version for use
when you are not connected to the Internet.

➤ cplusplus.com/reference/

 When I refer to a “Standard Library Reference” in this book, I am referring to one of these detailed
C++ references.

 The following are additional excellent online resources:

➤ github.com/isocpp/CppCoreGuidelines : The C++ Core Guidelines are a collaborative
effort led by Bjarne Stroustrup, inventor of the C++ language itself. They are the result of
many person-years of discussion and design across a number of organizations. The aim of
the guidelines is to help people to use modern C++ effectively. The guidelines are focused on
relatively higher-level issues, such as interfaces, resource management, memory management,
and concurrency.

➤ github.com/Microsoft/GSL : This is an implementation by Microsoft of the Guidelines
Support Library (GSL) containing functions and types that are suggested for use by the C++
Core Guidelines. It ’ s a header-only library.

➤ isocpp.org/faq : This is a large collection of frequently asked C++ questions.

➤ stackoverflow.com : Search for answers to common programming questions, or ask your
own questions.

 CONVENTIONS

 To help you get the most from the text and keep track of what ’ s happening, a number of conventions
are used throughout this book.

 WARNING Boxes like this one hold important, not-to-be-forgotten information
that is directly relevant to the surrounding text.

 NOTE Tips, hints, tricks, and asides to the current discussion are placed in boxes
like this one.

INTRODUCTION

li

 As for styles in the text:

 Important words are italic when they are introduced.

 Keyboard strokes are shown like this: Ctrl+A.

 Filenames and code within the text are shown like so: monkey.cpp .

 URLs are shown like this: wrox.com .

 Code is presented in three different ways:

 // Comments in code are shown like this.
In code examples, new and important code is highlighted like this.
 Code that's less important in the present context or that has been shown before is
formatted like this.

 Paragraphs or sections that are specific to the C++20 standard have a little C++20 icon on the left,
just as this paragraph does. C++11, C++14, and C++17 features are not marked with any icon.

 WHAT YOU NEED TO USE THIS BOOK

 All you need to use this book is a computer with a C++ compiler. This book focuses only on parts of
C++ that have been standardized, and not on vendor-specific compiler extensions.

 Any C++ Compiler
 You can use whichever C++ compiler you like. If you don ’ t have a C++ compiler yet, you can down-
load one for free. There are a lot of choices. For example, for Windows, you can download Microsoft
Visual Studio Community Edition, which is free and includes Visual C++. For Linux, you can use
GCC or Clang, which are also free.

 The following two sections briefly explain how to use Visual C++ and GCC. Refer to the documenta-
tion that came with your compiler for more details.

C++20

 COMPILERS AND C++20 FEATURE SUPPORT

 This book discusses new features introduced with the C++20 standard. At the time
of this writing, no compilers were fully C++20 compliant yet. Some new features
were only supported by some compilers and not others, while other features were
not yet supported by any compiler. Compiler vendors are hard at work to catch up
with all new features, and I ’ m sure it won ’ t take long before there will be fully
C++20-compliant compilers available. You can keep track of which compiler
supports which features at en.cppreference.com/w/cpp/compiler_support .

INTRODUCTION

lii

 Example: Microsoft Visual C++ 2019
 First, you need to create a project. Start Visual C++ 2019, and on the welcome screen, click the Cre-
ate A New Project button. If the welcome screen is not shown, select File ➪ New ➪ Project. In the
Create A New Project dialog, search for the Console App project template with tags C++, Windows,
and Console, and click Next. Specify a name for the project and a location where to save it, and
click Create.

 Once your new project is loaded, you can see a list of project files in the Solution Explorer. If this
docking window is not visible, select View ➪ Solution Explorer. A newly created project will contain
a file called <projectname>.cpp. You can start writing your C++ code in that .cpp file, or if you
want to compile source code files from the downloadable source archive for this book, select the
<projectname>.cpp file in the Solution Explorer and delete it. You can add new files or existing files
to a project by right-clicking the project name in the Solution Explorer and then selecting Add ➪ New
Item or Add ➪ Existing Item.

 At the time of this writing, Visual C++ 2019 did not yet automatically enable C++20 features. To
enable C++20 features, in the Solution Explorer window, right-click your project and click Properties.
In the Properties window, go to Configuration Properties ➪ C/C++ ➪ Language, and set the C++ Lan-
guage Standard option to ISO C++20 Standard or Preview - Features from the Latest C++ Working
Draft, whichever is available in your version of Visual C++. These options are accessible only if your
project contains at least one .cpp file.

 Finally, select Build ➪ Build Solution to compile your code. When it compiles without errors, you can
run it with Debug ➪ Start Debugging.

 Module Support
 At the time of this writing, Visual C++ 2019 did not yet have full support for modules. Authoring and
consuming your own modules usually works just fine, but importing Standard Library headers such
as the following did not yet work out of the box:

 import <iostream>;

 COMPILERS AND C++20 MODULE SUPPORT

 At the time of this writing, there was no compiler available yet that fully supported
C++20 modules. There was experimental support in some of the compilers, but it
was still incomplete. This book uses modules everywhere. We did our best to make
sure all sample code would compile once compilers fully support modules, but since
we were not able to compile and test all examples, some errors might have crept in.
When you use a compiler with support for modules and you encounter problems
with any of the code samples, double-check the list of errata for the book at www
.wiley.com/go/proc++5e to see if it ’ s a known issue. If your compiler does not yet
support modules, you can convert modularized code to non-modularized code, as
explained briefly in Chapter 11, “Odds and Ends.”

INTRODUCTION

liii

 To make such import declarations work, for the time being you need to add a separate header file
to your project, for example called HeaderUnits.h , which contains an import declaration for every
Standard Library header you want to import. Here ’ s an example:

 // HeaderUnits.h
 #pragma once
 import <iostream>;
 import <vector>;
 import <optional>;
 import <utility>;
 // ...

 Next, right-click the HeaderUnits.h file in the Solution Explorer and click Properties. In Configura-
tion Properties ➪ General, set Item Type to C/C++ Compiler and click Apply. Next, in Configuration
Properties ➪ C/C++ ➪ Advanced, set Compile As to Compile as C++ Header Unit (/exportHeader)
and click OK.

 When you now recompile your project, all import declarations that have a corresponding import
declaration in your HeaderUnits.h file should compile fine.

 If you are using module implementation partitions (see Chapter 11), also known as internal parti-
tions, then right-click all files containing such implementation partitions, click Properties, go to
Configuration Properties ➪ C/C++ ➪ Advanced, and set the Compile As option to Compile as C++
Module Internal Partition (/internalPartition) and click OK.

 Example: GCC
 Create your source code files with any text editor you prefer and save them to a directory. To compile
your code, open a terminal and run the following command, specifying all your .cpp files that you
want to compile:

 g++ -std=c++2a -o <executable_name> <source1.cpp> [source2.cpp ...]

 The -std=c++2a option is required to tell GCC to enable C++20 support. This option will change to
-std=C++20 once GCC is fully C++20 compliant.

 Module Support
 At the time of this writing, GCC only had experimental support for modules through a special ver-
sion of GCC (branch devel/c++-modules). When you are using such a version of GCC, module sup-
port is enabled with the -fmodules-ts option, which might change to -fmodules in the future.

 Unfortunately, import declarations of Standard Library headers such as the following were not yet
properly supported:

 import <iostream>;

 If that ’ s the case, simply replace such import declarations with corresponding #include directives:

 #include <iostream>

INTRODUCTION

liv

 For example, the AirlineTicket example from Chapter 1 uses modules. After having replaced the
imports for Standard Library headers with #include directives, you can compile the AirlineTicket
example by changing to the directory containing the code and running the following command:

 g++ -std=c++2a -fmodules-ts -o AirlineTicket AirlineTicket.cppm AirlineTicket.cpp
AirlineTicketTest.cpp

 When it compiles without errors, you can run it as follows:

 ./AirlineTicket

 std::format Support
 Many code samples in this book use std::format() , introduced in Chapter 1. At the time of this
writing, there was no compiler yet that had support for std::format() . However, as long as your
compiler doesn ’ t support std::format() yet, you can use the freely available {fmt} library as a
drop-in replacement:

1. Download the latest version of the {fmt} library from https://fmt.dev/ and extract the
code on your machine.

2. Copy the include/fmt and src directories to fmt and src subdirectories in your project
directory, and then add fmt/core.h, fmt/format.h, fmt/format-inl.h, and src/format

.cc to your project.

3. Add a file called format (no extension) to the root directory of your project and add the
following code to it:

 #pragma once
 #define FMT_HEADER_ONLY
 #include "fmt/format.h"
 namespace std
 {
 using fmt::format;
 using fmt::format_error;
 using fmt::formatter;
 }

4. Finally, add your project root directory (the directory containing the format file) as an addi-
tional include directory for your project. For example, in Visual C++, right click your project
in the Solution Explorer, click Properties, go to Configuration Properties ➪ C/C++ ➪ Gen-
eral, and add $(ProjectDir); to the front of the Additional Include Directories option.

 NOTE Don ’ t forget to undo these steps once your compiler supports the standard
std::format() .

INTRODUCTION

lv

 READER SUPPORT FOR THIS BOOK

 The following sections describe different options to get support for this book.

 Companion Download Files
 As you work through the examples in this book, you may choose either to type in all the code manu-
ally or to use the source code files that accompany the book. However, I suggest you type in all the
code manually because it greatly benefits the learning process and your memory. All of the source
code used in this book is available for download at www.wiley.com/go/proc++5e .

 NOTE Because many books have similar titles, you may fi nd it easiest to search by
ISBN; for this book, the ISBN is 978-1-119-69540-0.

 Once you ’ ve downloaded the code, just decompress it with your favorite decompression tool.

 How to Contact the Publisher
 If you believe you ’ ve found a mistake in this book, please bring it to our attention. At John Wiley &
Sons, we understand how important it is to provide our customers with accurate content, but even
with our best efforts an error may occur.

 To submit your possible errata, please e-mail it to our Customer Service Team at wileysupport@
wiley.com with “Possible Book Errata Submission” as a subject line.

 How to Contact the Author
 If you have any questions while reading this book, the author can easily be reached at
marc.gregoire@nuonsoft.com and will try to get back to you in a timely manner.

Introduction to Professional C++
PART I

 ▸ CHAPTER 1: A Crash Course in C++ and the Standard Library

 ▸ CHAPTER 2: Working with Strings and String Views

 ▸ CHAPTER 3: Coding with Style

1
A Crash Course in C++
and the Standard Library

WHAT’S IN THIS CHAPTER?

➤➤ A brief overview of the most important parts and syntax of the
C++ language and the Standard Library

➤➤ How to write a basic class

➤➤ How scope resolution works

➤➤ What uniform initialization is

➤➤ The use of const

➤➤ What pointers, references, exceptions, and type aliases are

➤➤ Basics of type inference

WILEY.COM DOWNLOADS FOR THIS CHAPTER

Please note that all the code examples for this chapter are available as a part of the chapter’s
code download on this book’s website at www.wiley.com/go/proc++5e on the
Download Code tab.

The goal of this chapter is to cover briefly the most important parts of C++ so that you have a
foundation of knowledge before embarking on the rest of this book. This chapter is not a
comprehensive lesson in the C++ programming language or the Standard Library. Certain basic
points, such as what a program is and what recursion is, are not covered. Esoteric points, such
as the definition of a union, or the volatile keyword, are also omitted. Certain parts of the C
language that are less relevant in C++ are also left out, as are parts of C++ that get in-depth
coverage in later chapters.

4 ❘ CHAPTER 1 A CrAsh Course in C++ And the stAndArd LibrAry

This chapter aims to cover the parts of C++ that programmers encounter every day. For example, if
you’re fairly new to C++ and don’t understand what a reference variable is, you’ll learn about that
kind of variable here. You’ll also learn the basics of how to use the functionality available in the
Standard Library, such as vector containers, optional values, string objects, and more. These
parts of the Standard Library are briefly introduced in Chapter 1 so that these modern constructs can
be used throughout examples in this book from the beginning.

If you already have significant experience with C++, skim this chapter to make sure that there aren’t
any fundamental parts of the language on which you need to brush up. If you’re new to C++, read
this chapter carefully and make sure you understand the examples. If you need additional introduc-
tory information, consult the titles listed in Appendix B.

C++ CRASH COURSE

The C++ language is often viewed as a “better C” or a “superset of C.” It was mainly designed to be
an object-oriented C, commonly called as “C with classes.” Later on, many of the annoyances and
rough edges of the C language were addressed as well. Because C++ is based on C, some of the syntax
you’ll see in this section will look familiar to you if you are an experienced C programmer. The two
languages certainly have their differences, though. As evidence, The C++ Programming Language
by C++ creator Bjarne Stroustrup (fourth edition; Addison-Wesley Professional, 2013) weighs in at
1,368 pages, while Kernighan and Ritchie’s The C Programming Language (second edition; Prentice
Hall, 1988) is a scant 274 pages. So, if you’re a C programmer, be on the lookout for new or unfamil-
iar syntax!

The Obligatory “Hello, World” Program
In all its glory, the following code is the simplest C++ program you’re likely to encounter:

// helloworld.cpp
import <iostream>;

int main()
{
 std::cout << "Hello, World!" << std::endl;
 return 0;
}

This code, as you might expect, prints the message “Hello, World!” on the screen. It is a simple pro-
gram and unlikely to win any awards, but it does exhibit the following important concepts about the
format of a C++ program:

➤➤ Comments

➤➤ Importing modules

➤➤ The main() function

➤➤ I/O streams

C++ Crash Course ❘ 5

These concepts are briefly explained in the following sections (along with header files as an alterna-
tive for modules, in the event that your compiler does not support C++20 modules yet).

Comments
The first line of the program is a comment, a message that exists for the programmer only and is
ignored by the compiler. In C++, there are two ways to delineate a comment. In the preceding and fol-
lowing examples, two slashes indicate that whatever follows on that line is a comment:

// helloworld.cpp

The same behavior (this is to say, none) would be achieved by using a multiline comment. Multiline
comments start with /* and end with */. The following code shows a multiline comment in action
(or, more appropriately, inaction):

/* This is a multiline comment.
 The compiler will ignore it.
 */

Comments are covered in detail in Chapter 3, “Coding with Style.”

Importing Modules
One of the bigger new features of C++20 is support for modules, replacing the old mechanism of
 so-called header files. If you want to use functionality from a module, you need to import that mod-
ule. This is done with an import declaration. The first line of the “Hello, World” application imports
the module called <iostream>, which declares the input and output mechanisms provided by C++:

import <iostream>;

If the program did not import that module, it would be unable to perform its only task of out-
putting text.

Since this is a book about C++20, this book uses modules everywhere. All functionality provided by
the C++ Standard Library is provided in well-defined modules. Your own custom types and func-
tionality can also be provided through self-written modules, as you will learn throughout this book.
If your compiler does not yet support modules, simply replace import declarations with the proper
#include preprocessor directives, discussed in the next section.

Preprocessor Directives
If your compiler does not yet support C++20 modules, then instead of an import declaration such as
import <iostream>;, you need to write the following preprocessor directive:

#include <iostream>

In short, building a C++ program is a three-step process. First, the code is run through a preproces-
sor, which recognizes meta-information about the code. Next, the code is compiled, or translated
into machine-readable object files. Finally, the individual object files are linked together into a single
application.

C++20

6 ❘ CHAPTER 1 A CrAsh Course in C++ And the stAndArd LibrAry

Directives aimed at the preprocessor start with the # character, as in the line #include <iostream>
in the previous example. In this case, an #include directive tells the preprocessor to take everything
from the <iostream> header file and make it available to the current file. The <iostream> header
declares the input and output mechanisms provided by C++.

The most common use of header files is to declare functions that will be defined elsewhere. A function
declaration tells the compiler how a function is called, declaring the number and types of parameters,
and the function return type. A definition contains the actual code for the function. Before the intro-
duction of modules in C++20, declarations usually went into header files, typically with extension .h,
while definitions usually went into source files, typically with extension .cpp. With modules, it is
no longer necessary to split declarations from definitions, although, as you will see, it is still possi-
ble to do so.

NOTE In C, the names of the Standard Library header files usually end in .h,
such as <stdio.h>, and namespaces are not used.

In C++, the .h suffix is omitted for Standard Library headers, such as
<iostream>, and everything is defined in the std namespace or a subnamespace
of std.

The Standard Library headers from C still exist in C++ but in two versions.

➤➤ The recommended versions without a .h suffix but
with a c prefix. These versions put everything in the
std namespace (for example, <cstdio>).

➤➤ The old versions with the .h suffix. These versions do
not use namespaces (for example, <stdio.h>).

Note that these C Standard Library headers are not guaranteed to be importable
with an import declaration. To be safe, use #include <cxyz> instead of import
<cxyz>;.

The following table shows some of the most common preprocessor directives:

PREPROCESSOR DIRECTIVE FUNCTIONALITY COMMON USES

#include [file] The specified file is inserted
into the code at the location of
the directive.

Almost always used to include
header files so that code can
make use of functionality defined
elsewhere.

C++ Crash Course ❘ 7

PREPROCESSOR DIRECTIVE FUNCTIONALITY COMMON USES

#define [id] [value] Every occurrence of the
specified identifier is replaced
with the specified value.

Often used in C to define a
constant value or a macro. C++
provides better mechanisms
for constants and most types
of macros. Macros can be
dangerous, so use them
cautiously. See Chapter 11,”Odds
and Ends,” for details.

#ifdef [id]

#endif

#ifndef [id]

#endif

Code within the ifdef (“if
defined”) or ifndef (“if
not defined”) blocks are
conditionally included or
omitted based on whether the
specified identifier has been
defined with #define.

Used most frequently to protect
against circular includes. Each
header file starts with an #ifndef
checking the absence of an
identifier, followed by a #define
directive to define that identifier.
The header file ends with an
#endif. This prevents the file
from being included multiple
times; see the example after
this table.

#pragma [xyz] xyz is compiler dependent.
Most compilers support a
#pragma to display a warning
or error if the directive is
reached during preprocessing.

See the example after this table.

One example of using preprocessor directives is to avoid multiple includes, as shown here:

#ifndef MYHEADER_H
#define MYHEADER_H
// ... the contents of this header file
#endif

If your compiler supports the #pragma once directive, and most modern compilers do, then this can
be rewritten as follows:

#pragma once
// ... the contents of this header file

Chapter 11 discusses this in a bit more detail. But, as mentioned, this book uses C++20 modules
instead of old-style header files.

8 ❘ CHAPTER 1 A CrAsh Course in C++ And the stAndArd LibrAry

The main() Function
main() is, of course, where the program starts. The return type of main() is an int, indicating the
result status of the program. You can omit any explicit return statements in main(), in which case
zero is returned automatically. The main() function either takes no parameters or takes two param-
eters as follows:

int main(int argc, char* argv[])

argc gives the number of arguments passed to the program, and argv contains those arguments.
Note that argv[0] can be the program name, but it might as well be an empty string, so do not rely
on it; instead, use platform-specific functionality to retrieve the program name. The important thing
to remember is that the actual arguments start at index 1.

I/O Streams
I/O streams are covered in depth in Chapter 13, “Demystifying C++ I/O,” but the basics of output
and input are simple. Think of an output stream as a laundry chute for data. Anything you toss into
it will be output appropriately. std::cout is the chute corresponding to the user console, or standard
out. There are other chutes, including std::cerr, which outputs to the error console. The << opera-
tor tosses data down the chute. In the preceding example, a quoted string of text is sent to standard
out. Output streams allow multiple types of data to be sent down the stream sequentially on a single
line of code. The following code outputs text, followed by a number, followed by more text:

std::cout << "There are " << 219 << " ways I love you." << std::endl;

Starting with C++20, though, it is recommended to use std::format(), defined in <format>, to
perform string formatting. The format() function is discussed in detail in Chapter 2, “Working with
Strings and String Views,” but in its most basic form it can be used to rewrite the previous statement
as follows:

std::cout << std::format("There are {} ways I love you.", 219) << std::endl;

std::endl represents an end-of-line sequence. When the output stream encounters std::endl, it
will output everything that has been sent down the chute so far and move to the next line. An alter-
nate way of representing the end of a line is by using the \n character. The \n character is an escape
sequence, which refers to a new-line character. Escape sequences can be used within any quoted string
of text. The following table shows the most common ones:

ESCAPE SEQUENCE MEANING

\n New line: moves the cursor to the beginning of the next line

\r Carriage return: moves the cursor to the beginning of the current line, but
does not advance to the next line

\t Tab

\\ Backslash character

\" Quotation mark

C++ Crash Course ❘ 9

WARNING Keep in mind that endl inserts a new line into the stream and
flushes everything currently in its buffers down the chute. Overusing endl,
for example in a loop, is not recommended because it will have a performance
impact. On the other hand, inserting \n into the stream also inserts a new line
but does not automatically flush the buffers.

Streams can also be used to accept input from the user. The simplest way to do this is to use the >>
operator with an input stream. The std::cin input stream accepts keyboard input from the user.
Here is an example:

int value;
std::cin >> value;

User input can be tricky because you can never know what kind of data the user will enter. See Chap-
ter 13 for a full explanation of how to use input streams.

If you’re new to C++ and coming from a C background, you’re probably wondering what has been
done with the trusty old printf() and scanf() functions. While these functions can still be used
in C++, I strongly recommend using format() and the streams library instead, mainly because the
printf() and scanf() family of functions do not provide any type safety.

Namespaces
Namespaces address the problem of naming conflicts between different pieces of code. For example,
you might be writing some code that has a function called foo(). One day, you decide to start using
a third-party library, which also has a foo() function. The compiler has no way of knowing which
version of foo() you are referring to within your code. You can’t change the library’s function name,
and it would be a big pain to change your own.

Namespaces come to the rescue in such scenarios because you can define the context in which names
are defined. To place code in a namespace, enclose it within a namespace block. Here’s an example:

namespace mycode {
 void foo()
 {
 std::cout << "foo() called in the mycode namespace" << std::endl;
 }
}

By placing your version of foo() in the namespace mycode, you are isolating it from the foo() func-
tion provided by the third-party library. To call the namespace-enabled version of foo(), prepend the
namespace onto the function name by using ::, also called the scope resolution operator, as follows:

mycode::foo(); // Calls the "foo" function in the "mycode" namespace

Any code that falls within a mycode namespace block can call other code within the same namespace
without explicitly prepending the namespace. This implicit namespace is useful in making the code
more readable. You can also avoid prepending of namespaces with a using directive. This directive

